Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-beta-1,3-glucanase bound to the outer cell surface.
نویسندگان
چکیده
Clostridium thermocellum produces one major beta-1,3-glucanase. Genomic DNA fragments containing the gene were cloned from two strains, DSM1237(T) (6848 bp) and F7 (9766 bp). Overlapping sequences were 99.9 % identical. The nucleotide sequences contained reading frames for a putative transposase, endo-beta-1,3-1,4-glucanase CelC, a putative transcription regulator of the LacI type, beta-1,3-glucanase Lic16A and a putative membrane protein. The licA genes of both strains encoded an identical protein of 1324 aa with a calculated molecular mass of 148 kDa. Lic16A is an unusually complex protein consisting of a leader peptide, a threefold repeat of an S-layer homologous module (SLH), an unknown module, a catalytic module of glycosyl hydrolase family 16 and a fourfold repeat of a carbohydrate-binding module of family CBM4a. The recombinant Lic16A protein was characterized as an endo-1,3(4)-beta-glucanase with a specific activity of 2680 and 340 U mg(-1) and a K(m) of 0.94 and 2.1 mg ml(-1) towards barley beta-glucan and laminarin, respectively. It was specific for beta-glucans containing beta-1,3-linkages with an optimum temperature of 70 degrees C at pH 6.0. The N-terminal SLH modules were cleaved from the protein as well in Escherichia coli as in C. thermocellum, but nevertheless bound tightly to the rest of the protein. Lic16A was located on the cell surface from which it could be purified after fractionated solubilization. Its inducible production allowed C. thermocellum to grow on beta-1,3- or beta-1,3-1,4-glucan.
منابع مشابه
Crystallization and preliminary X-ray diffraction studies of the family 54 carbohydrate-binding module from laminarinase (β-1,3-glucanase) Lic16A of Clostridium thermocellum.
The crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding module (CBM) from laminarinase Lic16A of the hyperthermophilic anaerobic bacterium Clostridium thermocellum (ctCBM54) are reported. Recombinant ctCBM54 was prepared using an Escherichia coli/pQE30 overexpression system and was crystallized by the hanging-drop vapour-diffusion method. X-ray diffraction dat...
متن کاملPRODUCTION, RELEASE AND THERMAL CHARACTERIZATION OF CELLULOLYTIC ENZYME FROM CELLULOMONAS sp. STRAIN "0"
Cellulase production by a Cellulomonas sp., isolated in 1985 from forest humus soil along the border of the Caspian Sea in Iran, was investigated. This strain secreted endo-and exo-cellulases in the culture medium, but some of the enzymes produced remained cell membrane bound. Cell bound enzymes were released by various treatments. The highest amount of endo-glucanase (up to 95%) and exo-gl...
متن کاملStructure and function of the Clostridium thermocellum cellobiohydrolase A X1-module repeat: enhancement through stabilization of the CbhA complex.
The efficient deconstruction of lignocellulosic biomass remains a significant barrier to the commercialization of biofuels. Whereas most commercial plant cell-wall-degrading enzyme preparations used today are derived from fungi, the cellulosomal enzyme system from Clostridium thermocellum is an equally effective catalyst, yet of considerably different structure. A key difference between fungal ...
متن کاملTwo new cellulosome components encoded downstream of celI in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possibly structural protein CseP.
Clostridium thermocellum produces a great number of extracellular cellulases which are free or cellulosome-bound. The nucleotide sequence of a gene cluster containing the genes celI, celN and cseP was determined from C. thermocellum strain F7. Gene products Cel9I and Cel9N are structurally related enzymes having a glycosyl hydrolase family 9 and a carbohydrate-binding module (CBM3c), but show c...
متن کاملFunctional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum.
Cellulosomes, synthesized by anaerobic microorganisms such as Clostridium thermocellum, are remarkably complex nanomachines that efficiently degrade plant cell wall polysaccharides. Cellulosome assembly results from the interaction of type I dockerin domains, present on the catalytic subunits, and the cohesin domains of a large non-catalytic integrating protein that acts as a molecular scaffold...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 149 Pt 4 شماره
صفحات -
تاریخ انتشار 2003